Applying sieving to the computation of quadratic class groups

نویسنده

  • Michael J. Jacobson
چکیده

We present a new algorithm for computing the ideal class group of an imaginary quadratic order which is based on the multiple polynomial version of the quadratic sieve factoring algorithm. Although no formal analysis is given, we conjecture that our algorithm has sub-exponential complexity, and computational experience shows that it is significantly faster in practice than existing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Sieving to the Computation of Quadraticclass

We present a new algorithm for computing the ideal class group of an imaginary quadratic order which is based on the multiple polynomial version of the quadratic sieve factoring algorithm. Although no formal analysis is given, we conjecture that our algorithm has sub-exponential complexity, and computational experience shows that it is signiicantly faster in practice than existing algorithms.

متن کامل

Subexponential Class Group Computation in Quadratic Orders (abstract)

In 1989, the first subexponential algorithm for computing the class group of an imaginary quadratic order was introduced by Hafner and McCurley. Their algorithm is based on an integer factorization algorithm due to Seysen, and is conditional on the truth of the Extended Riemann Hypothesis. Not long after, their result was generalized to arbitrary algebraic number fields by Buchmann. Efficient v...

متن کامل

Sieving in Function Fields

We present the rst implementation of sieving techniques in the context of function elds. More precisely, we compute in class groups of quadratic congruence function elds by combining the Algorithm of Hafner and McCurley with sieving ideas known from factoring. We apply our methods to compute generators and relations of the Jacobian variety of hyperelliptic curves over nite elds.

متن کامل

Use of SIMD-based data parallelism to speed up sieving in integer-factoring algorithms

Many cryptographic protocols derive their security from the apparent computational intractability of the integer factorization problem. Currently, the best known integer-factoring algorithms run in subexponential time. Efficient parallel implementations of these algorithms constitute an important area of practical research. Most reported implementations use multi-core and/or distributed paralle...

متن کامل

A mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices

In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 68  شماره 

صفحات  -

تاریخ انتشار 1999